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Abstract
In the framework of density functional theory and the generalized gradient
approximation, we investigate the effects of magnetism on four plutonium
allotropes. We show that an antiferromagnetic configuration gives a structural
hierarchy which is consistent with experimental features. Using a simple
Debye–Grüneisen model and a corrective term, we are able to draw a P–T
phase diagram of Pu. Harmonic contributions are not sufficient for obtaining
a correct description of the thermal properties of Pu and we emphasize the
important role played by electronic and anharmonic contributions.

1. Introduction

Plutonium metal is one of the most complex of all elements. At ambient pressure Pu transforms
into a succession of six crystallographic allotropes from room temperature up to the solid–
liquid transition just above 913 K (α, β, γ , δ, δ′ and ε phases). Plutonium melts at a much
lower temperature than its neighbours in Mendeleev’s table and does so with a decrease in
volume. Its phases present very different structures and properties. Some have complex open
structures (α and β: monoclinic) and others close-packed structures, sometimes distorted,
(γ : orthorhombic; δ and ε: cubic; δ′: tetragonal) [1]. Most unusual is the extreme variation
in atomic volume found in plutonium with a 24% volume increase in going from the α to the
δ phase.

The reason for the peculiar physical and chemical properties of plutonium lies in its
special location in the actinides series, at the boundary between the light actinides which
present 5f delocalized states (Th–Np) and the heavy actinides (Am–Lr) with 5f localized states.
According to the allotrope, the character of the 5f electrons varies from nearly delocalized, in
α-Pu, to varying degrees of localization, in the other phases. Then, according to the phase,
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there is a competition between localization and delocalization of 5f electrons and the behaviour
of plutonium is close to those of light or heavy actinides.

It is well known that standard density functional theory (DFT) with some local density
approximation (LDA) for the electron exchange and correlation effects fails to reproduce
plutonium equilibrium properties. Numerous approaches have been used to go beyond the
LDA and recently the LDA + U approach has been successfully applied to the problem [2, 3].
Nevertheless, as the U parameter is adjustable, it has been defined for the peculiar case of
δ-Pu. As the degree of localization of 5f electrons changes in an unknown manner from
one phase to another, the value of U should not be unique and such a method would involve a
different value of U for each allotrope. Then energy differences should no longer be comparable
and the LDA + U approach could be difficult to use for the determination of the whole phase
diagram of Pu. Recently the equilibrium properties of δ-Pu have also been correctly reproduced
by Savrasov et al [4] within a dynamical mean-field theory using the same Hubbard parameter.
Petit et al [5] used self-interaction-corrected (SIC) LDA to study the structural and electronic
properties of δ-Pu but they obtained a 30% too large equilibrium volume.

In addition to these specific treatments of 5f electron correlations, different kinds of
approximation have been successfully taken into account, e.g. the inclusion of magnetism
in calculations. Some results have been obtained by Antropov et al [6] and Nordström and
Singh [7] by considering various atomic non-collinearmagnetic configurations. More recently,
important results have been obtained by Wang and Sun [8] on δ-Pu and ε-Pu. By using the
generalized gradient approximation (GGA) and by considering an antiferromagnetic (AFM)
alignment of spins, they reproduced the correct equilibrium volume and an improved bulk
modulus.

Other works gave confirmations [9, 10]. Models for disordered local moments (DLM)
have also been successfully applied from thorium to californium [11]. More particularly,
Söderlind et al [10] investigated several magnetic configurations including DLM; the most
energetically favourable structures were obtained for the AFM type-I ordering and random
ordering in δ-Pu. They consider also that magnetic interactions can be used to calculate the
transition between the δ and γ phases [12].

The case of AFM α-Pu has also been investigated by Kutepov et al [13]. Very recently, we
showed that such GGA magnetism-based calculations are able to reproduce the high negative
values of the formation energies of Pu(1−x)Mx (M = Al, Ga and In) [14] compounds.

This quantity of coherent results indicates the important role played by magnetic
interactions, especially in the formation of local magnetic moments, in electronic structure
and in the stability of some of the plutonium phases. Although there is no direct experimental
evidence of magnetic moments in plutonium, some hypotheses can be advanced regarding
possible spin-glass-like or spin-fluctuation behaviours [13] for this metal.

In this paper, we apply the GGA AFM approximation in order to determine the ground
state properties of plutonium allotropes. In a second step, an appropriate thermodynamic
model is discussed, in order to expand our results as a function of temperature and pressure.
Then the solid part of the Pu phase diagram is obtained.

In section 2 the details of the electronic structure calculations are presented. The
thermodynamic model and results are described in section 3 and section 4 contains the results
and a discussion of them. A summary and the conclusions of this work are given in section 5.

2. Computational details

The electronic structure calculations are based on the all-electron full-potential linear
augmented plane-wave (FP-LAPW) method [15]. The self-consistent calculations are
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Table 1. Equilibrium volumes, bulk moduli and energy differences for five phases of Pu. The
minimum energy of the α AFM structure is the reference. The experimental values come from [1].

Phase Approximation used V0 (A3/atom) B0 (GPa) Minimum energy (mRyd)

α Non-spin-polarized 18.10 169.2 1.8
γ Non-spin-polarized 18.20 129.2 27.4
δ Non-spin-polarized 19.57 99.9 48.7
δ′ Non-spin-polarized 19.53 98.5 47.4
ε Non-spin-polarized 17.69 144.1 28.1

α Spin-polarized AFM 18.47 101.1 0
γ Spin-polarized AFM I 22.14 35.2 13.3
γ Spin-polarized AFM II 21.90 44.4 8.0
δ Spin-polarized AFM 23.43 54.8 9.0
δ′ Spin-polarized AFM 23.13 55.4 8.8
ε Spin-polarized AFM 21.19 45.1 12.9

α Experimental 19.90 55.9
γ Experimental 23.14 22.7
δ Experimental 24.92 33.9
δ′ Experimental 24.76 —
ε Experimental 24.04 —

performed with a fully relativistic treatment of electrons in core states and a scalar-relativistic
treatment including spin–orbit coupling (SOC) for the valence electrons. Additional p1/2 local
orbitals (LO) are included in the basis set in order to treat the 6p semi-core states modified
by SOC accurately [16]. The GGA [17] is used and magnetic configurations are taken into
account. The basis sets include the 6s, 6p, 7s, 7p, 6d and 5f partial waves.

Moreover, in order to obtain more flexibility in the radial basis functions and to decrease
the basis set size, new LO (APW + lo) for 5f partial waves of Pu are included [18].

All structures have been calculated with a muffin-tin radius of 2.5 bohrs except for the α

phase (2.1 bohrs). This difference in radius is related to the distance between first-neighbour
atoms in this peculiar structure. Nevertheless, the choice of the muffin-tin radius does not
modify our results. For instance using 2.1 bohrs for the δ phase leads to a variation of the
cohesive energy smaller than 0.3 mRyd/atom. The change of the equilibrium volume is less
than 0.5%. Finally we used kmax Rmt = 10 for plane-wave convergence (where Rmt is the
atomic sphere radius, kmax is the plane-wave cut-off) and the cut-off energy in the second
variational step equals 4.5 Ryd for SOC.

3. Structural stabilities and equations of state at 0 K

The structures of interest in this study are the monoclinic α structure, the body-centred
orthorhombic β structure, the face-centred cubic δ structure and the body-centred cubic ε

structure. The γ –ε transition occurs by way of an intermediate body-centred tetragonal γ ′
phase, which exists only in a very narrow temperature interval. For the α, δ and ε phases,
our calculations lead to results in close agreement with previous calculated equations of state
(EOS) [8, 10, 13]. Equilibrium properties and energy differences are reported in table 1.

It seems clear from table 1 that non-spin-polarized calculations fail to reproduce
equilibrium volumes and bulk moduli. The calculated energy differences between the different
phases show that the α phase is the most stable structure. However, these energy differences
are too high to be consistent with the experimental transition temperatures.
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Figure 1. Antiferromagnetic configuration type I for the
γ phase.

Figure 2. Antiferromagnetic configuration type II for the
γ phase.

For spin-polarized calculations, the appearance of magnetic moments in Pu compounds for
increasing volumes could be related to Hill’s considerations [19]. In this model the 5f electron
correlations lead to a close relationship between magnetic properties and Pu–Pu distances.
Thus for internuclear distances larger than 3.4 Å, plutonium atoms could bear a magnetic
moment. For all allotropes considered except for the α phase (�2.3 Å at equilibrium volume),
our ferromagnetic calculations present such a magnetic transition at Pu–Pu distances around
3.0 Å. Consequently, two minima in the energy–volume curves are observed for γ and ε

structures.
Taking into account an AFM configuration leads to strong changes in EOS of these

structures, as seen in table 1. Equilibrium volumes and bulk moduli are in better agreement
with experimental features and can be compared to LDA + U calculations for the δ phase [2].
These effects result from a band splitting as compared to the GGA non-magnetic calculations
and a partial localization of 5f electrons which reduce the chemical bonding. This leads to
an increased equilibrium volume and a reduced bulk modulus. Let us point out that a LAPW
treatment of the complex body-centred monoclinic structure of the β phase (34 atoms per unit
cell) is too computer-time-consuming and the study of its magnetic configurations cannot be
included in this contribution.

From an energetic point of view, δ and δ′ structures are the most strongly affected phases
followed by the γ and ε phases. The γ AFM phase shows two behaviours depending on the
magnetic configuration. AFM type-II-like structure is more stable than AFM type-I structure
(figures 1, 2). AFM type-II structure is not a layer of up and down spins but can be considered
as a more disordered magnetic structure. Another point is that the energy of the α phase is less
affected by magnetism. Although only one peculiar AFM configuration has been considered
(figure 3), the effect of magnetism does not lead to important changes of the EOS or energy.
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Figure 3. The antiferromagnetic configuration of the α phase.

By using a different magnetic configuration, Kutepov et al [13] find a similar behaviour of
this phase.

It is important to note that AFM GGA calculations lead to a structural hierarchy in
qualitative agreement with experimental results. The α phase is the most stable structure,
followed by γ , δ and δ′ (which can be considered as degenerate in energy) and ε phases.
Another interesting point is that the energy differences between these structures are not so far
from the values obtained by Wallace [20] who determines the EOS of the different phases by
fitting the experimental phase diagram (see figure 4). However, let us emphasize that the small
energy difference between the δ and δ′ phases is not reproduced in our calculations and the
calculated energy differences between the α phase and the high-temperature phases seem to
be too large.

To illustrate the dominant role played by magnetic interactions, we have explored the Bain
path of Pu. In plutonium, the transition δ–δ′–ε can be viewed as the deformation of a tetragonal
structure with the values of the tetragonal parameter c/a = 1.41, 1.33 and 1.0 respectively.
We have performed a study of the energy variation as a function of the c/a ratio for three
different volumes. The results are shown in figure 5. We can see that spin-polarized AFM
calculations predict two minima in the Bain paths. One minimum is for a tetragonal structure
with c/a = 0.85 and is volume independent. The second minimum occurs at a c/a value
which depends on the volume. At the experimental equilibrium volume of δ-Pu, this second
minimum corresponds to c/a = 1.41. At lower volume, this minimum occurs at a c/a value
close to the value 1.33 found for the δ′ structure.

Thus our results predict instability of the δ phase at the calculated equilibrium volume
(23.43 Å) and stability for expanded volumes. This behaviour of δ-Pu is in agreement with
the work of Söderlind et al [10] who also found that δ-Pu is unstable at the calculated
equilibrium volume.
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Figure 4. The energy–volume curve for Pu in the AFM configuration. Dashed lines on the left are
energy differences obtained by Wallace [20].
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Figure 5. The Bain paths for Pu in the AFM configuration. c/a = √
2 and c/a = 1 correspond to

δ and ε structures respectively. The inset is an enlargement near the c/a = √
2 region.

We have calculated the elastic constants C ′ of the δ and ε phases at their experimental
equilibrium volumes (table 2). The calculated C ′ value of δ is found to be in good agreement
with the measured value [22]. However, the small value of C ′ implies a soft response of the
system to volume-conserving tetragonal distortion as discussed above. The C44 calculation
for the AFM configuration requires a superstructure in order to keep the same magnetic
neighbouring and was not calculated. On the other hand, the bcc structure is located at a
maximum and so is not stabilized. As emphasized by Dai et al [21], the vibrations in this
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Table 2. Elastic constants in GPa. The experimental values come from [22].

Phase Approximation used B0 (C11 − C12)/2 C11 C12 C44

δ Non-spin-polarized 99.9 −49.5 — — —
δ Spin-polarized AFM 54.8 10.6 68.9 47.7 —

ε Non-spin-polarized 144.1 57.6 220.9 105.7 −6.2
ε Spin-polarized AFM 45.1 −29.1 — — —

δ Experimental 33.9 4.78 36.28 26.73 33.59

phase are extremely anharmonic and this results in a soft phonon spectrum which is only
stable at high temperatures.

The general agreement between the experimental results, calculated EOS and structural
hierarchy encourages us to calculate the thermodynamic properties of plutonium metal in the
framework of a Debye model.

4. The thermodynamic model and results

Phase diagrams typically display phase stability as a function of temperature and pressure. As
phonon spectra calculations are very complex to perform in the case of multiple plutonium
allotropes, we choose a simpler way to investigate the structural phase transitions on the basis
of first-principles bonding curves and the use of the Debye–Grüneisen theory. Let us consider
a system with a given averaged atomic volume V and temperature T . The Helmholtz free
energy F(V , T ) can be written as a sum of different contributions:

F(V , T ) = Ec(V ) + Fion(V , T ) + Fel(V , T ) + Fmag(V , T ) + FAE(V , T ) (1)

where Ec represents the 0 K total energy, Fion the vibrational free energy of the lattice, Fel the
free energy due to the thermal excitation of electrons, Fmag the magnetic free energy [8] and
FAE an additional empirical term describing anharmonic effects [20].

Within the Debye–Grüneisen model, the lattice can vibrate at all frequencies up to a Debye
cut-off frequency ωD defined by

h

2π
ωD = kB	D (2)

where h and kB are the Planck and Boltzmann constants. 	D is the Debye temperature.
Assuming a constant sound velocity, it can be expressed as [23]

	D = K

[
a B

M

]1/2

(3)

where a is the lattice constant (au), B the bulk modulus (kbar) and M the mass (au). K is a
constant mainly depending on the crystallographic structure.

For cubic metals, the universal K value is 26.024 and reproduces quite well the Debye
temperature of different elements [24]. The simplest way to define the numerical value of K for
non-cubic metals is by using relation (3) with the experimental 	D and B . Using experimental
results from [1, 25], we obtain K = 35.056 for the α phase and K = 28.360 for the δ phase.
This last value is close to the universal K . As the Debye temperatures are not known for the
two remaining structures (γ and ε) we use the values of K = 28.360 for these phases since ε

is a cubic phase and γ can be considered as close to a close-packed cubic structure. Finally,
we use these K values with the calculated bulk modulus in order to determine theoretical
Debye temperatures. Then the differences between the experimental and calculated Debye
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temperatures are due to errors produced in the calculation of the bulk modulus. Let us note
that this error is less than 5% of the experimental Debye temperature for the δ phase.

The Debye temperature varies with temperature and anharmonic effects in the vibrating
lattice are described in terms of a Grüneisen constant γ . The vibrational free energy and
entropy can be written as

ED(V , T ) = 9
8 NkB	D + 3NkBT D(	D/T ) (4)

and

SD(T ) = 3kB[ 4
3 D(	D/T ) − ln(1 − e−	D/T )] (5)

where D(	D/T ), the Debye function, varies from unity at high temperature to zero at low
temperature.

Neglecting electron–phonon interactions, the electronic contribution to the free energy is
Fel = Eel − T Sel where

Eel(V , T ) =
∫

n(ε, V ) f ε dε −
∫ εF

n(ε, V )ε dε (6)

and

Sel(V ) = −kB

∫
n(ε, V )[ f ln f + (1 − f ) ln(1 − f )] dε (7)

where n(ε, V ) is the electronic density of states and f is the Fermi distribution.
In the framework of our calculations, we considered plutonium as an AFM metal.

Following [8] we introduce a magnetic entropy term:

Fmag(V , T ) = −kBT ln[Ms(2L − Ms) + 1] (8)

where Fmag(V , T ) is the energy of the magnetic entropy, Ms is the total spin moment and L is
the 5f orbital moment.

Finally, the last term in the expression for the energy is the anharmonic free energy due to
phonon–phonon interactions and non-adiabatic effects of electron–phonon interactions. We
used the empirical relation introduced by Wallace [20]:

FAE(V , T ) = −D(V , T )T 2. (9)

We are now ready to shed light on the thermodynamics of the different phase transitions
of Pu, stressing the importance of the different contributions to the Helmholtz free energy.
As regards the vibrational contribution, it is noteworthy that the thermal expansion coefficient
is positive in a Debye model and cannot reproduce the experimental specificity for the δ

phase. Moreover, it is known [21] that the ε phase presents a strong anharmonic character.
Therefore it will be necessary to use different values of FAE as discussed below. Despite these
considerations, the set of calculated Debye temperatures, i.e. 203, 112, 126 and 112 K for the
α, γ , δ and ε phases respectively, ensures that the harmonic contribution is the most important
contribution to the thermal free energy. To make this notion quantitative, let us note that this
term represents more than 60% of the thermal part of the Helmholtz free energy difference at
each transition temperature studied.

Accurate evaluation of electronic free energies is another problem. Although the calculated
specific heat for the α phase is rather close to the experimental value, it is more difficult
to reproduce this quantity for the δ phase due to the experimentally narrow peak observed
in the DOS at the Fermi level [26]. The electronic structure of δ-Pu is strongly modified
within the spin-polarized calculations compared to the LDA calculations as mentioned
in [10] and [11]. Spin-polarized calculations improve the agreement with the experimental
photoelectron spectrum but not with an accuracy which allows a quantitative treatment. Indeed
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Table 3. The equivalence of the D terms (10−9 Ryd K−2) of the free electronic energies calculated
with the Sommerfeld model and equations (6), (7).

Felec Felec

Phase Felec approximated with N(E) ab initio approximated with experimental N(E)

α −2.75 −2.37 −6.48
γ −3.58 −2.79
δ −3.55 −3.72 −24.38
ε −3.58 −3.35

Table 4. Values of the D term (10−9 Ryd K−2).

Phase F(V, T )

α 0
γ −25.74
δ −32.32
ε −36.75

if the small spectral weight of the narrow peak leads to weak effects on the energy differences
it can become important to describe the thermal excitation of the electrons. In order to estimate
the relative importance of this effect, we calculate the electronic contributions for the δ and α

phases from equations (6), (7) and from the Sommerfeld model with the theoretical specific
heat. The first result is that the electronic contributions are very close whatever the allotrope
and the method used to calculate them (see table 3). If we now use the Sommerfeld model
with the experimental specific heats [25] of α-Pu and δ-Pu, the discrepancy found for δ-Pu
confirms the important role played by the narrow peak.

The magnetic contribution is related to the choice of the AFM configuration for all the
allotropes studied. Therefore this term will make a negligible contribution since the magnetic
moments do not differ very much from one structure to another. Let us note that a more
complex magnetic order could appear at high temperatures which could give more weight to
the magnetic contribution [12].

The anharmonic term D is approximated in such a way that the different experimental
transition temperatures are reproduced at ambient pressure: 417 K for α → γ , 590 K for
γ → δ and 725 K for δ → ε. We suppose that the α phase is correctly reproduced without
anharmonicity (D = 0). The values of D are given in table 4. At the α → γ transition, this
corrective term represents 25% of the total temperature contribution to the free energy of the
γ phase, 30% for γ and δ structures at 590 K (γ → δ) and near 40% for the δ and ε phases at
725 K (δ → ε).

It must be emphasized that, in fact, FAE contains not only anharmonic effects but also
all the corrections due to the inability of GGA spin-polarized calculations to reproduce some
experimental features. This term could be considered as a more general corrective quantity
including inaccuracies in 0 K energy differences and bulk moduli and errors in fits, as can be
seen from figure 4. Moreover, another part of FAE comes from the electronic contribution as
discussed above. If we express electronic energies in terms of D (table 3), the experimental
difference between the α and δ phases is 17.9 × 10−9 Ryd K−2. This value is greater than half
the corrective D values given in table 4. The D values for the two remaining structures (γ and
ε) are close to that of the δ phase. The smaller value obtained for the γ phase may be due to the
electronic energy loss in going from δ to the γ phase with its slightly smaller volume. For the
ε phase, this electronic energy loss is largely compensated by important anharmonic effects.
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Figure 6. The experimental phase diagram obtained by Stephens [27].
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Figure 7. The calculated phase diagram.

Despite some crude approximations, we calculate the Gibbs energies of this system for
different pressures. Then it is possible to obtain the solid part of the Pu phase diagram including
α, γ , δ and ε structures (figures 6, 7).

5. Conclusions

To conclude, we have tried to demonstrate the possibility of calculating the P–T phase diagram
of Pu within the framework of a rather simple Debye model. At T = 0 K, only GGA
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spin-polarized calculations are able to give energy differences between the different allotropes
which are consistent with the gross features of the experimental phase diagram of Pu. We
show also that the ε phase is mechanically unstable while the small positive value of C ′
for the δ phase calculated at the experimental volume implies a soft response of the system
to volume-conserving tetragonal distortion. Harmonic contributions calculated in the Debye
model are not sufficient for obtaining a correct description of the thermal properties of different
allotropes. More particularly, the electronic contributions for the γ , δ and ε phases as well as
the anharmonic contribution for the ε phase play an important role in determining the transition
temperatures. We emphasize that accurately evaluating each of these contributions remains a
challenge for the actual DFT-based calculations.
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